

CHENNAI INSTITUTE OF TECHNOLOGY

Department of Electronics and Communication Engineering Basic Electronics Lab

Instructional Objectives:

- To understand the characteristics of basic electronic devices.
- To verify the basic laws and theorems of electric circuits.
- To design and test various amplifier and its frequency response.
- To design and test the analog and digital circuits and verify its performance.
- To design and test performance various circuits using SPICE software.

Students Outcomes:

At the end of the course, the student will be able to:

- · Selection of the devices and components for various applications.
- · Reduce the complex circuits into a simplified circuits.
- · Design various amplifiers as per the required gain and bandwidth.
- · Design combinational and sequential circuits.
- Analyze the performance of amplifiers, oscillators and power supplies using SPICE software and HDL for digital circuits.

Major Equipments available in the Lab

S. No.	Name of the Equipments	Specification	Quantity 15	
1	Cathode Ray Oscilloscope (CRO)	0-30 MHz		
2	Function Generator (FG)	0-3 MHz		
3	Dual Regulated Power Supply (DRPS)	0-30V / 2A	10	
4	Various electronics components	0.00 0.000		
5	Ammeters, Voltmeters, Multi meters	Adequate Nos.		

Courses Offered

5.No.	ODD Semester	Class	No. of Sessions	EVEN Semester	Class	No. of Sessions
1	Analog and Digital Circuits Laboratory	3 rd SemECE	4	Circuits and Devices Laboratory	2 rd Sem ECE	4
2	Electronics Laboratory	3 rd Sem EEE	2	Circuits and Simulation Laboratory	4°Sem ECE	- 4
Percentage of Lab Utilization: 60%				Percentage of Lab Utilization: 80%		

Department of Electronics and Communication Engineering Basic Electronics Lab

List of Experiments

Circuits and Simulation Laboratory

IV Sem ECE

Design, Test and Analysis of

- Series and Shunt feedback amplifiers-Frequency response, input and output impedance
- 02. RC Phase shift oscillator and Wien Bridge Oscillator
- 03. Hartley Oscillator and Colpitts Oscillator
- 04. Single Tuned Amplifier
- 05. RC Integrator and Differentiator circuits
- 06. Astable and Monostable multivibrators

Simulation Using Spice

- 01. Tuned collector oscillator
- 02. Twin -T oscillator / Wein Bridge oscillator
- 03. Double and Stagger tuned Amplifiers
- 04. Bi-stable Multivibrator
- 05. Schmitt Trigger circuit with predictable hysteresis
- 06. Analysis of power amplifier

Department of Electronics and Communication Engineering Basic Electronics Lab

List of Experiments

Analog and Digital Circuits Laboratory

III Sem ECE

Analog Experiments

- 01. Design of regulated power supplies.
- 02. Frequency response of CE, CB, CC and CS amplifiers.
- 03. Darlington amplifier.
- 04. Differential amplifiers transfer characteristics, CMRR Measurement.
- 05. Cascode and cascade amplifiers.
- 06. Determination of bandwidth of single stage and multistage amplifiers.
- 07. Analysis of BJT with fixed bias and voltage divider bias using Spice.
- Analysis of FET, MOSFET with fixed bias, self-bias and voltage dividerbias using simulation software like Spice.
- 09. Analysis of Cascode and Cascade amplifiers using Spice.
- 10. Analysis of frequency response of BJT and FET using Spice.

Digital Experiments

- 01. Design and implementation of code converters using logic gates
 - i. BCD to excess-3 code and vice versa
 - ii. Binary to Gray and vice-versa.
- Design and implementation of 4 bit binary Adder/ Subtractor and BCD adder using IC 7483.
- Design and implementation of Multiplexer and De-multiplexer using logic gates.
- 04. Design and implementation of encoder and decoder using logic gates.
- 05. Construction and verification of 4 bit ripple counter and Mod-10/Mod-12 Ripple counters.
- 06. Design and implementation of 3-bit synchronous up/down counter.

Department of Electronics and Communication Engineering Basic Electronics Lab

List of Experiments

Circuits and Devices Laboratory

II Sem ECE

- 01. Characteristics of PN junction diode.
- 02. Zener diode characteristics & regulator using zener diode.
- 03. Common emitter input-output characteristics.
- 04. Common base input-output characteristics.
- 05. FET characteristics.
- 06. SCR characteristics.
- 07. Clipper and clamper & FWR.
- 08. Verifications of Thevinin & Norton theorem.
- 09. Verifications of KVL & KCL.
- 10. Verifications of super position theorem.
- 11. Verifications of maximum power transfer & reciprocity theorem.
- 12. Determination of resonance frequency of series & parallel RLC circuits.
- 13. Transient analysis of RL and RC circuits.

Electronics Laboratory

III Sem EEE

- 01. Characteristics of semiconductor diode and zener diode.
- Characteristics of a NPN transistor under common emitter, common collector and common base configurations.
- 03. Characteristics of JFET and draw the equivalent circuit.
- 04. Characteristics of UJT and generation of saw tooth waveforms.
- Design a frequency response characteristics of a common emitter amplifier.
- O6. Characteristics of photo diode & photo transistor, study of light activated relay circuit.
- 07. Design and testing of RC phase shift and LC oscillators.
- 08. Single phase half-wave and full wave rectifiers with inductive and capacitive filters.
- 09. Differential amplifiers using FET.
- 10. Study of CRO for frequency and phase measurements.